L-type voltage-gated calcium channels in hippocampal neurons and their potential as anti-epilept(ogen)ic drug targets

نویسندگان

  • Petra Geier
  • Michael Lagler
  • Stefan Boehm
  • Helmut Kubista
چکیده

Background Neuronal L-type voltage-gated calcium channels (LTCCs) were shown to be involved in the control of neuronal excitability, synaptic plasticity and gene expression. These mechanisms are altered in epileptic tissue and are thought to contribute to epileptogenesis. Hence, LTCCs are interesting targets for epileptic and anti-epileptic therapy. However, their role in epilepsy, whether LTCCs enhance or reduce epileptiform/epileptogenic activity, remained unclear. The aim of this study was to identify in which manner LTCCs contribute and/or modulate electrical excitation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Voltage-gated Calcium Channels Are Not Affected by the Novel Anti-epileptic Drug Lacosamide.

The novel anti-epileptic drug lacosamide targets two proteins - voltage-gated sodium channels and collapsin response mediator protein 2 (CRMP-2) - suggesting dual modes of action for lacosamide. We recently identified the neurite outgrowth and axonal guidance protein CRMP-2 as a novel partner and regulator of the presynaptic N-type voltage-gated Ca(2+) channel (CaV2.2) [Brittain et al., J. Biol...

متن کامل

Calcium-activated potassium conductances contribute to action potential repolarization at the soma but not the dendrites of hippocampal CA1 pyramidal neurons.

Evidence is accumulating that voltage-gated channels are distributed nonuniformly throughout neurons and that this nonuniformity underlies regional differences in excitability within the single neuron. Previous reports have shown that Ca2+, Na+, A-type K+, and hyperpolarization-activated, mixed cation conductances have varying distributions in hippocampal CA1 pyramidal neurons, with significant...

متن کامل

Chronic benzodiazepine administration potentiates high voltage-activated calcium currents in hippocampal CA1 neurons.

Signs of physical dependence as a consequence of long-term drug use and a moderate abuse liability limit benzodiazepine clinical usefulness. Growing evidence suggests a role for voltage-gated calcium channel (VGCC) regulation in mediating a range of chronic drug effects from drug withdrawal phenomena to dependence on a variety of drugs of abuse. High voltage-activated (HVA) calcium currents wer...

متن کامل

The Physiology, Pathology, and Pharmacology of Voltage-Gated Calcium Channels and Their Future Therapeutic Potential.

Voltage-gated calcium channels are required for many key functions in the body. In this review, the different subtypes of voltage-gated calcium channels are described and their physiologic roles and pharmacology are outlined. We describe the current uses of drugs interacting with the different calcium channel subtypes and subunits, as well as specific areas in which there is strong potential fo...

متن کامل

Agmatine blocked voltage-gated calcium channel in cultured rat hippocampal neurons.

AIM To investigate the mechanism of agmatine by observing the effect of agmatine on the voltage-gated channels in rat hippocampal neurons. METHODS The whole-cell patch recording technique was performed to record the voltage-gated potassium, sodium, and calcium currents in cultured rat hippocampus. Agmatine was applied directly to the single neuron using a pressure injector with microtubules. ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2009